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1. Description of Our Method and Tools Used: 

Model Selection 

YOLO series has been the de facto object detection model for real-time applications [1], [2], due to its 

inherently high inference speed and accuracy. With its latest instalment, the YOLO series is now equipped 

with instance segmentation capability, making it a suitable candidate for this work. Specifically, YOLOv8-seg 

employs an enhanced version of CSPDarknet53 as its backbone, incorporating cross-stage partial (CSP) 

connections to improve information flow between layers. The head consists of a series of convolutional layers 

that process feature maps from P3, P4, and P5 of the backbone. YOLOv8-seg also replaces the traditional 

YOLO neck with the C2f module, which extracts features at three distinct scales. Finally, three segmentation 

heads are used to identify objects of varying sizes—small, medium, and large—by leveraging the different 

feature sets. These heads use fully connected layers and anchor-free detection, allowing the model to adapt 

more effectively to various object shapes and sizes. Note that the choice of instance segmentation model does 

not affect the results of our method, as the our proposed approach is more data-centric rather than model-

centric.  

Transfer Learning 

Next, we also perform a simple ablation study to validate the impact of transfer learning on training the 

building extraction model. Specifically, we compare the F1 score of the model in three settings: (i) without 

pretrained weights, (ii) with COCO-segmentation pretrained weights, and (iii) with DOTAv1 Aerial 

Detection’s pretrained weights. Note that we only experiment with these three setups, as these pretrained 

weights are more accessible via Ultralytics’ YOLOv8 framework [3]. 

Extra Dataset  

We leverage the Microsoft Building Footprint (BF) dataset, a large-scale dataset containing 1.4 billion building 

footprints from around the world [4]. Note that we avoid using Japan building footprint data from the 

Microsoft BF dataset to prevent data leakage, as the aim of the challenge is to test the generalizability of our 

model with limited data from Japan. We extract building footprints from two regions: (1) Redmond, 

Washington, and (2) Las Vegas, Nevada. For simplicity’s sake, we refer to the former as the Redmond 

Dataset and the latter as the Las Vegas Dataset. For the Redmond Dataset, we set the longitudinal range to be 

-122.16484503187519 to -122.06529607517405, and the latitudinal range to be 47.69090474454916 to 

47.6217555345674. Meanwhile, we set the longitudinal range to be -115.31432742408262 to -

114.98257204779121, and the latitudinal range to be 36.00372747612303 to 36.27297250862463 for the Las 

Vegas Dataset. Next, we randomly extract 3,000 satellite images from each region and acquire the 

corresponding building footprints as labels. With this, we ended up with two extra datasets which can be used 

along with the provided Building Extraction Generalization Challenge (BEGC2024) data as the training 

dataset. Figure 1 and 2 show examples of images sampled for Redmond dataset and Las Vegas dataset, 

respectively. 

Diffusion Augmentation 

In the previous section, we discussed how we leveraged existing open-source datasets to improve the diversity 

of the training dataset for our YOLOv8 segmentation model. However, such a method is not label-efficient 

and might fail when there is no suitable dataset available. In fact, our empirical results in Table III show that 

not all extra datasets might be useful for training. Hence, we propose to leverage diffusion augmentation, 

which is a technique that uses diffusion models to produce realistic images and enhance the diversity of the 

training dataset. Our goal is to use only the BEGC2024 training dataset to train a diffusion model that can 

generate realistic data as a form of augmentation, without requiring additional datasets. This method 

guarantees the label-efficiency of the training. 



Figure 3 illustrates our diffusion augmentation pipeline. Firstly, we extract the segmentation labels (in polygon 

format) from the BEGC2024 training set and convert them into segmentation masks. Next, we utilize an open-

source land-cover semantic segmentation model, trained on the LoveDA dataset [5], to perform segmentation 

on the BEGC2024 training images. Although the predicted segmentation masks may contain inaccuracies, our 

primary concern is the accurate identification of building locations. The remaining land cover classes serve to 

enhance the realism of the synthetic images. Therefore, we refine the predicted semantic segmentation masks 

using the building footprints from the BEGC2024 polygon labels. This process yields a usable segmentation 

mask, which can then be employed to train our diffusion model. Lastly, we train a segmentation-guided 

diffusion models which take the semantic segmentation mask as input, and generate a realistic image which 

follows the mask, similar to [6]. Specifically, we uses a Denoising Diffusion Implicit Models (DDIM) which 

takes the target image concatenated with the segmentation mask at each denoising step. 

    

(a) (b) (c) (d) 

Fig 1. Example of images extracted from Microsoft BF dataset, sampled around Redmond, Washington. 

 

    

(a) (b) (c) (d) 

Fig 2. Example of images extracted from Microsoft BF dataset, sampled around Las Vegas, Nevada. 

 

Fig. 3. The proposed diffusion augmentation pipeline. (1) Use pretrained segmentation model to generate semantic 

segmentation. (2) Refine the segmentation mask using the building polygon labels. (3) Concatenate input image with the 

semantic mask. (4) Train the segmentation-guided diffusion model using the concatenated inputs. 



2. Evaluation of Our Method: 

The YOLOv8 series includes several instance segmentation models, ranging from the smallest nano (n) variant 

to the largest extra-large (x) variant. We conducted multiple experiments to select the best YOLOv8 variant 

for our task, considering both the F1 score and model complexity. Additionally, we compared the performance 

of YOLOv8-based instance segmentation models with other state-of-the-art models, including YOLOv9, 

Mask R-CNN, and EfficientNet. All models were trained for 50 epochs with a 640 image size. During testing 

and submission, the confidence and NMS IoU thresholds were set to 0.20 and 0.70, unless stated otherwise. 

We also evaluated the F1-score of the models with a confidence threshold of 0.50, primarily to assess the 

models’ confidence rather than for actual submission. After selecting the best model, we experimented with 

training the model by varying the pretrained weights and the training dataset. 

3. Detailed Analysis of Results: 

Model Comparison 

Table I shows the comparison of different models in term of F1-score and model complexity. Note that we do 

not use other tricks (i.e. additional training dataset or diffusion augmentation) at this stage, as we keep the 

ablation study for these tricks in the following sections. Generally, we observe that the F1 score increases 

when scaling up the model from the smallest YOLOv8n-seg to the medium size YOLOv8m-seg.  Notably, 

there is a significant jump in F1 score from the YOLOv8s-seg to the YOLOv8m-seg when evaluated in 

confidence threshold of 0.50, with the score improving from 0.535 to 0.592. Interestingly, the F1 score of 

YOLOv8m-seg is slightly lower than the smaller YOLOv8s-seg when setting the confidence threshold to 0.20. 

This observation suggest that the m-variant still has a bigger room of improvement compared to s-variant. 

Meanwhile, the largest YOLOv8x-seg variant has a lower F1 score than YOLOv8m-seg in both confidence 

threshold 0.50 and 0.20. This suggests that further improvements in F1 score beyond the m-variant may be 

minimal unless we enhance the quality of the training dataset or address generalizability issues. Note that all 

YOLOv8-seg variants are pretrained using the DOTAv1 Aerial Detection dataset. We also tested pretraining 

the models using COCO segmentation dataset, but found no significant difference, as shown in Table II. 

For YOLOv9 segmentation models [7], only the c- and e-variants are provided, which correspond to the m- 

and x-variants of YOLOv8, respectively. To compare their performance, we can look at the “medium” size 

category models: YOLOv9c-seg and YOLOv8m-seg. YOLOv9c-seg has 27.9 million parameters and 159.4 

giga FLOPS, while YOLOv8m-seg has 27.3 million parameters and 110.2 giga FLOPS. This means that 

although both models have a similar number of parameters, YOLOv9c-seg requires 1.45 times more FLOPS 

than YOLOv8m-seg. Despite this, YOLOv9c-seg has a significantly lower F1 score compared to YOLOv8m-

seg's F1 in both confidence threshold level. Note that this may due to the different batch size used for YOLOv8 

Table I: Comparison of (Pubic) F1-Score for Different YOLO Variants and Size 

Model 
Pretrained 

Weights 

Batch 

Size 

Params 

(M) 
FLOPs (G) 

Public F1-Score 

Conf = 

0.50 

Conf = 

0.20 

YOLOv8n-seg 

DOTAv1 

Aerial 

Detection 

16 3.4 12.6 0.510 0.645 

YOLOv8s-seg 16 11.8 42.6 0.535 0.654 

YOLOv8m-seg 16 27.3 110.2 0.592 0.649 

YOLOv8x-seg 8 71.8 344.1 0.579 0.627 

YOLOv9c-seg 
COCO 

Segmentation 
4 27.9 159.4 0.476 0.577 

Mask R-CNN 

(MPViT-Tiny) 

COCO 

Segmentation 
4 17 196.0 - 0.596 

EfficientNet-b0-

YOLO-seg 
ImageNet 4 6.4 12.5 - 0.560 

 



and YOLOv9, due to our GPU memory size constraint. However, this does not change the fact that YOLOv9 

is hard to train and slower due to the high FLOPS, with no F1-score improvement. 

For the performance baseline comparison, we also tried using Mask R-CNN with the MPViT backbone, as 

suggested in [8]. However, due to resource constraints, we were only able to test the smallest MPViT-Tiny 

variant for our Mask R-CNN. With this modification, Mask R-CNN achieved an F1 score of 0.596 at 

confidence threshold of 0.20, which is considerably lower than that of YOLOv8m-seg. However, the model 

has a surprisingly high FLOPS of 196 giga FLOPS, which is 1.78 times greater than that of YOLOv8m-seg. 

Hence, we argue that the substantial increase in FLOPS from YOLOv8m-seg to Mask R-CNN does not justify 

the incremental improvement in the F1 score.  

Additionally, we tested replacing the YOLOv5 backbone with EfficientNet [9], a lightweight CNN model 

designed for low-computational-power devices. EfficientNet achieved its lightweight design and high 

inference speed by replacing parts of the convolutional layers with depthwise convolutional layers, which 

require fewer parameters. The caveat is that modern accelerators (i.e., GPUs) are not optimized for depthwise 

convolutional layers. As a result, we were only able to test the smallest EfficientNet-b0 variant as a proof of 

concept. Despite this, it achieved an F1 score of 0.560, which is surprisingly close to Mask R-CNN (with the 

MPViT-Tiny backbone). Note that This model is not pretrained with DOTAv1 and/or COCO segmentation 

dataset. We believe the performance could be further improved by pretraining and scaling up the EfficientNet 

backbone.  

In short, we find that the YOLOv8 series is a strong candidate for instance segmentation tasks, offering the 

best tradeoff between FLOPS and F1 score. Specifically, we selected the m-variant (YOLOv8m-seg) as our 

preferred model. In the following sections, we will demonstrate how we can improve the performance of our 

instance segmentation model with datasets and other techniques. 

Impact of Using Different Training Dataset 

Next, we experimented with the performance of YOLOv8m-seg by varying the training dataset, as shown in 

Table III. Setup A represents the performance baseline, where YOLOv8m-seg was trained solely on the 

provided BEGC2024 training dataset. As expected, this setup resulted in the lowest F1-score, likely due to the 

lack of diversity in the training data. In Setup B, we trained YOLOv8m-seg using both the BEGC2024 training 

set and our Redmond dataset. This simple step of diversifying the training data led to a significant increase in 

the F1-score, from 0.649 to 0.660. Surprisingly, using the Las Vegas dataset resulted in an even higher public 

F1-score of 0.686, as shown in Setup C. We believe the reason why the Las Vegas dataset results in a greater 

improvement in F1 score is due to its greater semantic difference from the BEGC2024 training set, which 

helps enhance the model's ability to generalize in the test set. As shown in Figure 2, the buildings in the Las 

Vegas dataset have subtle differences compared to those in the BEGC2024 dataset, particularly in terms of 

Table II: Comparison of Transfer Learning using Different Pretrained weights 

Model Public F1 Score 

YOLOv8m-seg 0.636 

YOLOv8m-seg + COCO pretrained weights 0.649 

YOLOv8m-seg + DOTAv1 pretrained weights 0.649 

 

Table III: Comparison of (Public) F1-score for YOLOv8m-seg using Different Dataset 

Setup Dataset Public F1 Score 

A BEGC 2024 0.649 

B BEGC 2024 + Redmond Dataset 0.660 

C BEGC 2024 + Las Vegas Dataset 0.686 

D BEGC 2024 + Diffusion Augmentation 0.672 

E BEGC 2024 + CutMix Dataset 0.650 

 



rooftop colours and shapes. Additionally, the images in the Las Vegas dataset are mostly sampled from desert-

like areas, which are not common in the BEGC2024 training set. In contrast, the Redmond dataset is more 

similar to the BEGC2024 training set. Not only do the building structures and colours look similar, but the 

backgrounds also resemble those of the BEGC2024 rural area, which is predominantly covered with forests 

or vegetation. This similarity explains why the performance improvement with the Redmond dataset is not as 

significant as with the Las Vegas dataset. 

Surprisingly, the performance of the YOLOv8m-seg model trained with the BEGC2024 dataset using diffusion 

augmentation resulted in a considerably high F1 score of 0.672, as shown in Setup D. This F1 score is even 

higher than that of Setup B, which was trained with the Redmond dataset. This observation demonstrates that 

our diffusion augmentation method successfully created semantically different images that were sufficient to 

diversify the BEGC2024 training set. However, the F1 score of Setup D is still lower than that of Setup C, 

which was trained with the Las Vegas dataset. We observed that the advantage of the Las Vegas dataset over 

diffusion augmentation lies in its background diversity. Since our segmentation-guided diffusion model was 

trained solely on the BEGC2024 training set, it predominantly learned from the same underlying distribution. 

Even though the generated buildings are different, the backgrounds remain largely similar to those in the 

BEGC2024 training set. As a result, the Las Vegas dataset still offers higher diversity (i.e., desert backgrounds, 

different building shapes). Nonetheless, we have demonstrated the practicality of diffusion augmentation when 

additional datasets are not available. Figure 4 shows example of images generated via our diffusion 

augmentation pipeline using the segmentation-guided diffusion model. 

We also tried CutMix augmentation to diversify the training dataset to improve generalization of our model. 

Similar to [10], we cut out buildings from the BEGC2024 dataset and placed them randomly into new 

background images. Specifically, we collected five different backgrounds, ranging from desert and beach to 

forest. When generating the CutMix dataset, we randomly selected one of these background images and pasted 

the building extracted from the original image. We applied this CutMix augmentation to each image in the 

BEGC2024 training set, resulting in 3,784 new images. However, we found this method to be less effective, 

achieving an F1 score of only 0.650, as shown in Setup E of Table III. The F1 score improvement was almost 

negligible compared to our baseline in Setup A. We believe this is due to the lack of variation in building 

structures, as we only changed the backgrounds. This highlights the importance of diversifying both building 

shapes and background textures to improve the model's generalization. 

In short, we found that using additional datasets and diffusion augmentation can significantly improve the 

generalizability of our model, resulting in an improvement in the F1 score. Table IV presents a comparison of 

our methods with those of the 2nd and 3rd place entries on the Kaggle Leaderboard. Our YOLOv8m-seg 

model, trained on both the BEGC2024 training set and the Las Vegas dataset, achieved the highest F1 score 

on both the public and private leaderboards. Meanwhile, our model trained with the diffusion augmentation 

method performed slightly lower than the 2nd place entry but significantly higher than the 3rd place. This 

again highlights the robustness of our diffusion augmentation pipeline. At this time, the methods used by the 

2nd place participants are unknown. However, it is likely that they utilized either a larger model or a larger 

dataset, as scaling laws typically lead to better performance. Nevertheless, the close F1 score between our 

model trained with diffusion augmentation and the 2nd place solution suggests that our proposed diffusion 

augmentation is both label-efficient and effective. 

Table IV: Public and Private F1-Score of Our Methos 

Dataset Public F1 Score Private F1 Score 

BEGC 2024 0.64926 0.66331 

BEGC 2024 + Redmond Dataset 0.65951 0.67153 

BEGC 2024 + Las Vegas Dataset 0.68627 0.70326 

BEGC 2024 + Diffusion Augmentation 0.67189 0.68096 

2nd place 0.6813 0.68453 

3rd Place 0.59314 0.60649 

 



Varying the Intersection of Union (IoU) threshold for Non-Maximal Surpression (NMS) layer 

NMS can be less effective at detecting small, densely packed objects, as it relies on IoU to suppress 

overlapping bounding boxes. In scenarios involving small and dense objects, the bounding boxes often overlap 

significantly, which can lead to the suppression of true positives. Examples of dense and small objects are 

illustrated in Figures 4d, 4e, and 4g. We can mitigate this issue by increasing the IoU threshold in the NMS 

layer to prevent unnecessary reduction of bounding boxes. We experimented by increasing the IoU threshold 

in the NMS layer of YOLOv8m-seg from the default 0.70 to 0.95, with increments of 0.05. Generally, we 

found that IoU thresholds of 0.90 and 0.95 work best compared to other threshold settings. Note that simply 

increasing the IoU threshold does not directly translate to better performance, as it may lead to an increase in 

false positives that should have been suppressed by the NMS layers. For instance, setting the IoU threshold 

between 0.75 and 0.80 is generally worse than the default 0.70 threshold, as shown in Tables V. Hence, our 

final submission is the YOLOv8m-seg model trained on the BEGC2024 and Las Vegas datasets, with the IoU 

threshold for NMS set to 0.95. In future works, we consider trying more advanced NMS variation including 

Attention based NMS [11] and Density-based NMS [12] to better mitigate this problem. Note that this should 

be the last resort to improve the model performance, as the main focus of the challenge is to address the 

generalizability of the model with limited domain-specific training data. 

 

Fig. 4. Samples of synthetic images generated by the diffusion augmentation pipeline based on the semantic segmentation 
mask. 



Table V: Private F1 Score for Different NMS IoU Threshold. Missing Values are Denoted with dash. 

Dataset 
NMS IoU Threshold 

0.70 0.75 0.80 0.85 0.90 0.95 

BEGC2024 + Redmond Dataset 0.672 0.677 - - 0.748 0.866 

BEGC2024 + Las Vegas Dataset 0.703 0.693 0.686 0.721 0.766 0.897 

BEGC2024 + Diffusion Augmentation 0.681 - 0.694 0.711 0.751 0.887 

 

4. Error Analysis, including examples of Failed Attempts: 

As mentioned in earlier sections, we made various attempts to improve the generalization of our model from 

the training set to the test set. Some of the failed attempts included using different models, such as the more 

recent YOLOv9c model, Mask R-CNN with an MPViT-Tiny backbone, and EfficientNet-b0-YOLO-seg. A 

common pitfall with these models is that they are computationally expensive to train without a decent GPU. 

As a result, we either used smaller variants of these models or decreased the batch size, significantly limiting 

their potential. Additionally, we found that without pretrained weights from either the COCO segmentation or 

DOTA aerial detection dataset, the models performed poorly. This is evident from the poor performance of 

our EfficientNet-b0-based YOLO model, which was initialized with only ImageNet weights. We also 

attempted CutMix augmentation to generate synthetic data and diversify our training set. However, the lack 

of variation in building shapes and structures resulted in only a limited F1 score improvement. For more details, 

please refer to the previous sections. 

 

5. Codes & Model Weights: 

a) Code for YOLO-based Building Instance Segmentation: 

https://github.com/yjwong1999/RSBuildingExtraction 

b) Code for Diffusion Augmentation Training Pipeline: 

https://github.com/yjwong1999/RSGuidedDiffusion 

c) Las Vegas Dataset: 

https://www.dropbox.com/scl/fi/qaqo2lqd7x7gxh521f8ce/LasVegas.zip?rlkey=j3oute8e9ia9yoa1hc8

5fw2ev&st=ug5qoefi&dl=0 

d) Synthetic Data Generated by Diffusion Augmentation: 

https://www.dropbox.com/scl/fi/slq3qcg0qhzpj9cc22ws4/generated_images.zip?rlkey=npgj3v4ki6o7

sogrca742ubt3&st=ooqs8l0q&dl=0 

e) Pretrained Model trained using BEGC2024 + Las Vegas Dataset: 

https://www.dropbox.com/scl/fi/cdrl62i3mx9p82lqwpik5/yolov8m-

seg_LasVegas.pt?rlkey=8ao7a5zz7xnqfd74deffprix2&st=rbtt6dfi&dl=0 

f) Pretrained Model trained using BEGC2024 + Diffusion Augmentation: 

https://www.dropbox.com/scl/fi/3et60ycgrefyqjz0rtj5b/yolov8m-

seg_DiffusionAugmentation.pt?rlkey=z8hov0plgte3iqkop0k41ejnw&st=93xdy0pe&dl=0 

 

Remark: We provided the link to our Colab notebooks in both our GitHub repository for easy 

reimplementation of our training pipeline! Our Colab notebooks will teach step by step how to train everything 

from scratch and/or use our pretrained models to reimplement our results. Feel free to check the Colab 

notebooks. 
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https://github.com/yjwong1999/RSGuidedDiffusion
https://www.dropbox.com/scl/fi/qaqo2lqd7x7gxh521f8ce/LasVegas.zip?rlkey=j3oute8e9ia9yoa1hc85fw2ev&st=ug5qoefi&dl=0
https://www.dropbox.com/scl/fi/qaqo2lqd7x7gxh521f8ce/LasVegas.zip?rlkey=j3oute8e9ia9yoa1hc85fw2ev&st=ug5qoefi&dl=0
https://www.dropbox.com/scl/fi/slq3qcg0qhzpj9cc22ws4/generated_images.zip?rlkey=npgj3v4ki6o7sogrca742ubt3&st=ooqs8l0q&dl=0
https://www.dropbox.com/scl/fi/slq3qcg0qhzpj9cc22ws4/generated_images.zip?rlkey=npgj3v4ki6o7sogrca742ubt3&st=ooqs8l0q&dl=0
https://www.dropbox.com/scl/fi/cdrl62i3mx9p82lqwpik5/yolov8m-seg_LasVegas.pt?rlkey=8ao7a5zz7xnqfd74deffprix2&st=rbtt6dfi&dl=0
https://www.dropbox.com/scl/fi/cdrl62i3mx9p82lqwpik5/yolov8m-seg_LasVegas.pt?rlkey=8ao7a5zz7xnqfd74deffprix2&st=rbtt6dfi&dl=0
https://www.dropbox.com/scl/fi/3et60ycgrefyqjz0rtj5b/yolov8m-seg_DiffusionAugmentation.pt?rlkey=z8hov0plgte3iqkop0k41ejnw&st=93xdy0pe&dl=0
https://www.dropbox.com/scl/fi/3et60ycgrefyqjz0rtj5b/yolov8m-seg_DiffusionAugmentation.pt?rlkey=z8hov0plgte3iqkop0k41ejnw&st=93xdy0pe&dl=0
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